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In this paper, we derive and investigate an asymptotic model for the dynamics of
curved viscous inertial Newtonian fibres subjected to surface tension, as they occur
in rotational spinning processes. Accordingly, we extend the slender body theory of
Panda, Marheineke & Wegener (Math. Meth. Appl. Sci., vol. 31, 2008, p. 1153) by
including surface tension and deducing boundary conditions for the free end of the
fibre. The asymptotic model accounts for the inner viscous transport and places no
restrictions on either the motion or the shape of the fibre centreline. Depending on
the capillary number, the boundary conditions yield an explicit description for the
temporal evolution of the fibre end. We study numerically the behaviour of the fibre
as a function of the effects of viscosity, gravity, rotation and surface tension.

1. Introduction
Wallwork et al. (2002) presented an asymptotic model for the trajectories of slender

curved inviscid jets under surface tension emerging from a rotating orifice, assuming
a stationary centreline. In rotational spinning processes of highly viscous fluids, the
unrestricted motion of a non-stationary centreline is an important feature that cannot
be neglected; a good example is the ‘breakup mode 4’ in the experiments of Wong et al.
(2004). Accordingly, the focus of this paper is the systematic asymptotic derivation and
numerical investigation of a one-dimensional model that generalizes the work done by
Wallwork et al. (2002) by allowing for a non-stationary centreline, which is therefore
suitable for simulating the spinning of slender curved inertial viscous Newtonian
fibres subjected to surface tension. Our approach is to extend the slender body theory
of Panda, Marheineke & Wegener (2008) by including surface tension and deducing
an asymptotically appropriate boundary condition for the free end of the fibre.

In the process under consideration (see figure 1), a viscous liquid jet leaves a small
spinning nozzle located on the curved face of a circular cylindrical drum rotating
about its symmetry axis. At the nozzle, the velocity, cross-sectional area and direction
of the jet are prescribed. Starting from an initial length of zero, the extruded liquid
jet grows and moves due to viscous friction, surface tension and gravity. To describe
the process, we choose a coordinate system rotating with the drum. This makes
the position of the nozzle and the direction of the inflow time independent, but
introduces fictitious rotational body forces due to inertia. The shape of the jet is
described by the time-dependent position of its centreline (jet axis), which is defined
geometrically as the locus of the mid-points of the cross-sections of the jet and which
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Figure 1. (Left) Rotating device used in the production of glass wool (photo by industrial
partner). (Right) Centreline γ of a viscous fibre extruded from a rotating drum, calculated
numerically at dimensionless times t = 2.5, 5 and 10 using the method described in this paper.

is, in general, not a streamline of the three-dimensional flow. Our asymptotic model
determines the dynamics of the fibre centreline γ (s, t), the cross-sectional area A(s, t),
the momentum-associated vector-valued velocity v(s, t), the intrinsic scalar-valued
velocity u(s, t) and the temporal evolution of the fibre length L(t), where s ∈ [0, L(t))
is the arclength measured from the nozzle and t is the time:

∂tA + ∂s(uA) = 0, (1.1a)

∂t (Av) + ∂s(uAv) = ∂s

((
3

Re
A∂su +

√
π

2We

√
A

)
∂sγ

)
+ A f , (1.1b)

v = u ∂sγ + ∂tγ , (1.1c)

with gravitational and rotational body forces

f =
1

Fr2
eg − 2

Rb
(eω × v) − 1

Rb2
(eω × (eω × γ )) (1.1d)

and the boundary conditions

dL(t)

dt
= u(L(t), t), L(0) = 0, (A∂su)(L(t), t) =

√
π

6

Re

We

√
A(L(t), t), (1.1e)

A(0, t) = 1, u(0, t) = 1, γ (0, t) = γ 0, ∂sγ (0, t) = τ 0, (1.1f)

at the free fibre end and the nozzle, respectively. Finally, the definition of the arclength
parameter implies:

‖∂sγ ‖ = 1. (1.1g)

The variables in (1.1) have been non-dimensionalized using the fluid density,
the mean velocity at the nozzle, a typical fibre length and the nozzle area. The
dimensionless numbers that appear express the ratios between inertia and viscosity
(Reynolds number Re), inertia and surface tension (Weber number We), inertia
and gravity (Froude number Fr) and inertia and rotation (Rossby number Rb).
The balance laws for mass (cross-section) and momentum are characterized by two
velocities v and u that are related by a coupling condition. The momentum-associated
velocity v is generated by the geometrical motion of the fibre centreline ∂tγ and the
intrinsic velocity u. The intrinsic velocity is the rate of change of the arclength
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parameter corresponding to a material point, and is thus related to the inner viscous
transport. The balance laws combine the inner viscous transport with the unrestricted
motion and shape of the centreline. We use the phrase ‘unrestricted motion and
shape’, since we presuppose a highly non-stationary curved centreline in contrast to
previous studies limited to stationary and/or nearly straight fibres. However, to avoid
self-penetration of the cross-sections, the condition Rκ � 1 must hold, where R is the
radius of the cross-section and κ is the curvature of the centreline. While the balance
laws of the model are certainly physically intuitive, the boundary conditions at the
free end require a systematic asymptotic derivation. As we will show, these conditions
yield an explicit description for the temporal evolution of A(L(t), t) that involves
only on the capillary number Ca =We/Re, the ratio of viscous forces and surface
tension.

By introducing the convective derivative D/Dt = ∂t + u∂s , our model equations
(1.1a)–(1.1c) can be alternatively written in the primitive variables

D

Dt
A = −A∂su,

D

Dt
v =

1

A
∂s

((
3

Re
A∂su +

√
π

2We

√
A

)
∂sγ

)
+ f ,

D

Dt
γ = v,

which might be easier to interpret physically. However, in this paper we use the
conservation form for the underlying three-dimensional problem (2.2) as well as for
the asymptotic one-dimensional problem (1.1) because of technical reasons in the
model reduction.

The understanding of the dynamics of curved viscous inertial fibres/jets with surface
tension under gravity and rotation is of interest in many industrial applications,
including the drawing, tapering and spinning of polymer and glass fibres (Pearson
1985, and references therein) and pellet manufacturing (Decent, King & Wallwork
2002; Wallwork et al. 2002; Wong et al. 2004; Partridge et al. 2005). Our work
is motivated by the application of glass wool production (figure 1). In rotational
spinning processes, hot molten glass is pressed by centrifugal forces through the
perforated walls of a rapidly rotating device to form thousands of thin curved liquid
fibres. These break up into filaments due to the growth of surface tension-driven
instabilities. The filaments cool and solidify while falling down onto a conveyor belt.
Numerous theoretical, numerical and experimental investigations have considered
various aspects of such processes, including fibre spinning (Pearson 1985; Wallwork
et al. 2002; Decent et al. 2004), breakup and drop formation (Eggers 1997; Stokes,
Tuck & Schwartz 2000; Eggers & Dupont 2001; Howell & Siegel 2004; Stokes & Tuck
2004; Wong et al. 2004; Partridge et al. 2005), dynamics and crystallization of non-
Newtonian (viscoelastic) flows (Bechtel et al. 1988; Forest & Wang 1994; Forest, Wang
& Bechtel 2000), instabilities (Matovich & Pearson 1969; Pearson & Matovich 1969;
Shah & Pearson 1972; Geyling & Homsey 1980; Schultz & Davis 1982; Gospodinov
& Roussinov 1993; Yarin et al. 1999; Forest & Zhou 2001) and the effects of
viscosity, surface tension, rotation, gravitation and aerodynamic forces (Entov &
Yarin 1984; Dewynne & Wilmott 1993; Cummings & Howell 1999; Wallwork et al.
2002; Decent et al. 2004; Stokes & Tuck 2004). In this paper, we focus on the
systematic asymptotic derivation and numerical investigation of the one-dimensional
model (1.1).



348 N. Marheineke and R. Wegener

For uniaxial flows, one-dimensional models have been widely used to carry out
theoretical and numerical stability analysis of glass fibre drawing processes, where
the boundary condition at the fibre end is a prescribed pulling velocity (see, e.g.
Geyling & Homsey 1980; Gospodinov & Roussinov 1993; Caroselli 1999; Yarin et al.
1999; Forest & Zhou 2001). Such models have been heuristically derived with and
without surface tension, starting from cross-sectional averaging of the balance laws
under certain geometry and profile assumptions (Pearson & Matovich 1969; Pearson
1985; Dewynne, Ockendon & Wilmot 1992 and the references therein). Entov &
Yarin (1984), whose model includes linear and angular momentum effects as well
as aerodynamic forces, assume that the centreline is nearly straight (Rκ � 1 and
Rλ� 1, where λ is the torsion of the centreline), cross-sections are circular and on
the lateral surface the shearing forces vanish and the isotropic normal tractions are
small relative to the internal stresses on cross-sections. The first systematic derivation
of a one-dimensional fibre model was that of Dewynne et al. (1992), which is the
basis for several later asymptotic model reduction approaches. These authors used
regular asymptotic expansions to simplify the equations describing stationary Stokes
flow with a non-stationary free surface, fixed boundaries and no surface tension. Their
resulting balance equations are in our dimensionless notation

∂tA + ∂s(uA) = 0, ∂s

(
3

Re
A∂su

)
= 0,

together with a decoupled hyperbolic evolution equation for the twist of the cross-
sections. Their assumption of a nearly straight centreline was extended to a curved
dynamic centreline by Howell (1994). At the same time, Dewynne, Howell & Wilmott
(1994) deduced an asymptotic fibre model for non-stationary Navier–Stokes flow
without surface tension, allowing for a dynamic but nearly straight centreline that
is prescribed at the boundaries. This model was subsequently extended to include
surface tension by Cummings & Howell (1999). The restriction to nearly straight fibres
permits an asymptotic analysis using Cartesian coordinates. Numerical investigations
of Stokes and Navier–Stokes flows in straight fibres without surface tension can
be found, e.g. in the context of honey dripping under gravity (Stokes et al. 2000,
Stokes & Tuck 2004).

For flows involving curved and coiled fibres, such as those that interest us here, the
studies of Decent et al. (2002); Wallwork et al. (2002); Decent et al. (2004); Ribe (2004)
and Ribe, Habibi & Bonn (2006a) are certainly central and worth pointing out. As
already mentioned, the former studies involve numerical simulation of inviscid (Decent
et al. 2002) and viscous (Decent et al. 2004) liquid jets emerging from a rotating
orifice in prilling processes for which a linear stability analysis has been developed in
Wallwork et al. (2002). The asymptotic approach presupposes a stationary centreline
as well as circular cross-sections and constant velocity profiles at leading order. The
curved centreline is handled by a covariant coordinate transformation. For the steady
coiling of viscous jets without surface tension, Ribe (2004) proposed an asymptotic
analysis based on the cross-sectionally averaged linear and angular momentum
equations, assuming a stationary and moderately curved (Rκ � 1) centreline. Including
bending, twisting as well as stretching the model was extended to a dynamic centreline
in Ribe, Habibi & Bonn (2006a).

Most of the uniaxial models, as well as the stationary model with a curved centreline
of Decent and Wallwork, are special cases of the curved non-stationary model
without surface tension that we presented recently in Panda et al. (2008). Based on
the previously developed methodologies, in that work we derived systematically an
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asymptotic fibre model without any restriction on the centreline motion and shape
(i.e. Rκ � 1), cross-sectional shape, profile quantities or the inner viscous transport. To
handle the nonlinearity and the curved geometry, we used a formulation of the Navier–
Stokes equations in scaled curvilinear coordinates that involves two velocities u and
v, where u describes the convection in the chosen curvilinear coordinates and v the
actual velocity in the underlying spatial coordinates. However, the neglect of surface
tension in Panda et al. (2008) suppresses important effects such as drop formation and
rupture that are caused by surface-tension-driven instabilities (see Eggers & Dupont
2001; Sierou & Lister 2003; Wong et al. 2004; Partridge et al. 2005). Accordingly,
the aim of this paper is to extend the slender body theory of Panda et al. (2008)
to include surface tension, and in particular to deduce asymptotically appropriate
boundary conditions for the free end of the fibre. To date, only heuristic boundary
conditions have been suggested, e.g. in Eggers & Dupont (2001). In the terminology
of Antman (2006), our model (1.1) is a ‘string’ model consisting of balance equations
for mass and linear momentum. They coincide with those of Entov & Yarin (1984)
(see the Appendix for details concerning the definition of the different velocities used
in the literature). Decoupled from the string part, Entov & Yarin (1984) stated an
additional equation for the angular momentum that might be incorporated in our
model using asymptotic expansions to higher order. By the choice of a non-stationary
material centreline as reference curve in contrast to our geometrical one, the approach
in Ribe (2004) and Ribe et al. (2006a) turns out to be a ‘rod’ model with fully coupled
equations for mass, linear and angular momentum. Especially the coupling of the
twisting with the motion of the centreline is very important for the coiling of a fibre
falling on a rigid substrate, but not so relevant for the rotational spinning of a fibre
whose end is free. ‘String’ and ‘rod’ model coincide in case of negligibly small internal
shearing forces. The numerical analysis of our model shows a realistic fibre behaviour
due to the effects of viscosity, gravity, rotation and surface tension that compares
favourably with the experimental data of Wong et al. (2004).

The three-dimensional free boundary value problem (BVP) for the spinning of a
slender curved inertial viscous fibre is characterized by the slenderness parameter ε,
i.e. ratio between nozzle width and typical fibre length, which enters the problem via
the inflow and the dynamic boundary conditions due to the definition of the Weber
number. Applying the transformation theory of Panda et al. (2008) and formulating
the free BVP in scaled curvilinear coordinates with respect to the fibre centreline
and the slenderness parameter in § 2, we embed the BVP into a fibre family whose
inflow conditions are independent of ε. Their asymptotic analysis follows the spirit
of Dewynne et al. (1992) by using standard expansion techniques in powers of the
slenderness parameter for the model reduction. We thereby determine the (a priori
unknown) relation between the cross-sectional areas and their boundaries by the
assumption of circular cross-sections. Finally, the comparison of the volume-averaged
three-dimensional balance laws with the line-averaged one-dimensional balance laws
yields the appropriate boundary conditions for the free end of the fibre. The resulting
one-dimensional model can be understood as a generalization of existing models to
the case of unrestricted motion of a viscous fibre with an arbitrarily curved centreline
and surface tension. The effects of viscosity, gravity, rotation and surface tension on
the fibre dynamics are numerically investigated in § 3 by applying a finite-volume
method on a staggered grid with an implicit upwind flux discretization. We focus
on analysing the motion of the fibre centreline and the temporal evolution of the
fibre end, and discuss the range of validity of our model with respect to the given
parameters.
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2. Asymptotic derivation
2.1. Three-dimensional free boundary value problem

We model the spinning of a slender curved viscous fibre as a three-dimensional
free BVP for an incompressible Newtonian fluid with surface tension. For simplicity,
we neglect the temperature dependence of all physical properties. The boundary of
the flow domain Ω�(t) ⊂ �3 consists of the time-independent inlet Γ �

in representing
the nozzle and the time-dependent free surface Γ �

fr (t). We non-dimensionalize the
underlying Navier–Stokes equations using the fluid density ρ, the mean velocity V at
the spinning nozzle and a typical fibre length 	 for the spinning process considered.
The small ratio between the nozzle width and the length 	 is the slenderness parameter
ε. Hence, due to the scaling with V , the dimensionless inflow velocity profile vin at
the nozzle satisfies

|Γ �
in |1/2

= ε � 1,

∫
Γ �

in

vin · τ 0 dA = ε2, (2.1)

where |Γ �
in | =

∫
Γ �

in
dA denotes the measure of the planar cross-sectional area of the

nozzle Γ �
in and τ 0 denotes its inward-directed normal vector. The spinning process is

characterized by the dimensionless Reynolds number Re = 	ρV/μ and Weber number
We =(ε	/2)ρV 2/σ , where μ is the dynamic viscosity and σ is the coefficient of surface
tension. The effective length ε	/2 that appears in the definition of the Weber number
can be understood as the typical radius of curvature of the free surface.

The balance laws for mass and momentum in the flow domain Ω�(t) are now,

∇r · v = 0, (2.2a)

∂tv + ∇r · (v ⊗ v) = ∇r · TT + f with T = −p I +
1

Re
(∇rv + (∇rv)T ), (2.2b)

and the kinematic and dynamic boundary conditions for the free surface Γ �
fr (t) are

(v · n�) = w�, (T · n�) = − ε

We
(H n�). (2.2c)

As mentioned, we prescribe the inflow velocity profile vin at the nozzle Γ �
in and

initialize the spinning process with an empty flow domain Ω�(0) = ∅. The unknowns
of the BVP (2.2) are the field variables for velocity v and pressure p as well as the
flow domain Ω�(t) itself, which is determined by the unit outer normal vectors n� and
the scalar speed w� of its free surface Γ �

fr (t). The jump in the normal stresses at Γ �
fr (t)

is incorporated in the definition of the Newtonian stress tensor T by choosing p as
the hydrodynamic pressure relative to a constant atmospheric pressure. The effects of
surface tension are represented by the inhomogeneous dynamic boundary condition
for T with a mean curvature H that is deduced from the geometry. The model is
completed by the choice of appropriate body forces f , which in our case include
gravitational and rotational forces.

The slenderness parameter ε enters the spinning problem via the inflow domain
Γ �

in in (2.1). For the reduction to an asymptotic one-dimensional model, we follow
the concept of Panda et al. (2008) and formulate (2.2) in appropriate scaled
curvilinear coordinates. To emphasize the analogy between geometrical quantities
in the curvilinear coordinates and those in the spatial problem, we use the same
notation but suppress the superscript �. The idea behind the introduction of these
coordinates is to provide an inflow domain Γin that is independent of ε. The
corresponding balance laws are ε dependent and form the basis for the rest of
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Figure 2. Fibre domain in spatial (left) and in scaled curvilinear coordinates (right).

the asymptotic derivation. Concretely, we define a bijective time-dependent scaled
curvilinear coordinate transformation r̆ : Ω(t) → Ω�(t),

r̆(x, t) = γ (s, t) + ε x1η1(s, t) + ε x2η2(s, t), with s = x3, (2.3)

with respect to the slenderness parameter ε and an arclength parameterized curve
γ (s, t) with s ∈ [0, L(t)), i.e. ‖∂sγ ‖ =1. We identify this curve as the centreline of
length L(t) of our flow domain Ω�(t) (cf. figure 2). Assuming sufficient regularity of
γ , the curvature κ = ‖∂ssγ ‖, κ �= 0 and the torsion λ= ∂sγ · (∂ssγ × ∂sssγ )/κ2 are well
defined. The vectors η1 and η2 together with the tangent τ of γ constitute a local
orthonormal basis along the curve. They can be written in the forms:

τ = ∂sγ , η1 = cos φ η − sin φ b, η2 = sinφ η + cosφ b,

where η = ∂ssγ /κ and b = τ × η denote the normal and binormal vectors, respectively,
and φ(s, t) =

∫ s

0
λ(σ, t) dσ is the torsion angle (see Bishop 1975). According to the

Serret–Frenet formulae, the basis vectors satisfy,

∂sτ = (∂αh)ηα, ∂sηα = −(∂αh)τ with h(x, t) = x1κ cos φ + x2κ sinφ, α = 1, 2.

Here and henceforth, we apply a generalized Einstein summation convention wherein
Greek indices range over the values {1, 2}. We specify the flow domain Ω�(t) in
terms of the corresponding domain Ω(t) in the coordinates, i.e. Ω�(t) = r̆(Ω(t), t).
Therefore, we assume Ω(t) to be composed of cross-sections A(s, t) that we
characterize by a smooth 2π-periodic non-negative radius function R(ψ, s, t)

Ω(t) = ∪s∈[0,L(t))A(s, t) × {s}, (2.4)

A(s, t) = {(x1, x2) ∈ �2 | (x1, x2) = (� cos ψ, � sin ψ), � ∈ [0, R(ψ, s, t)], ψ ∈ [0, 2π)}.
By this geometrical assumption (2.4) on the flow domain we admit all essential fibre
motions of interest in spite of limiting the general fibre behaviour in the considered
rotational spinning processes. Here, the bijectivity of the coordinate transformation
(2.3) is the crucial constraint, which is violated if Rκ > 1. However, this condition is
evidently weaker than the assumption Rκ � 1 used, e.g. in Entov & Yarin (1984) and
Ribe (2004). Summing up, the whole fibre domain is described by three quantities:
the fibre length L, the radius function R and the fibre curve γ . The identification of
γ with the centreline implies that∫

A(s,t)

x1 dx1 dx2 =

∫
A(s,t)

x2 dx1 dx2 = 0, (2.5)

in the curvilinear coordinates. Moreover, the centreline satisfies γ (0, t) = γ 0 as well as
∂sγ (0, t) = τ 0 in accordance with our geometrical assumption, since we consider the
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spatial inflow boundary Γ �
in to be planar with centre point γ 0 and inward-directed

normal τ 0. Accordingly, the ε-independent relations for inflow velocity profile and
slenderness parameter stemming from (2.1) are as follows:

|Γin | = |A|(0, t) = 1,

∫
Γin

vin · τ0 dA =

∫
A(0,t)

vin · τ0 dx1 dx2 = 1. (2.6)

As shown in figure 2, our fibre has a bottom surface that might – but need
not – shrink to a single point (|A(L(t), t)| = |Γbot (t)| = 0) due to the action of
surface tension. We therefore distinguish between the lateral and the bottom
portions of the free surface in the curvilinear coordinates, i.e. Γfr (t) = Γlat (t) ∪ Γbot (t),
Γlat (t) ∩ Γbot (t) = ∅. The lateral surface Γlat (t) can be parameterized by the bijective
function ξ (·, t) for a fixed time t , defined as

ξ (ψ, s, t) = R(ψ, s, t) cosψ e1 + R(ψ, s, t) sin ψ e2 + se3,

with canonical basis {ei }, i = 1, 2, 3 in �3. The corresponding outward-directed
normal vector n and surface speed w are then given by

n(ξ , t) =
∂ψξ × ∂sξ

‖∂ψξ × ∂sξ‖ =
∂ψ (R sinψ)e1 − ∂ψ (R cosψ)e2 − R∂sRe3√

R2 + (∂ψR)2 + R2(∂sR)2
,

w(ξ , t) = ∂tξ · n(ξ , t) =
R∂tR√

R2 + (∂ψR)2 + R2(∂sR)2
.

Now, as

ξ �(ψ, s, t) = r̆(ξ (ψ, s, t), t) = γ (s, t)+ε(R(ψ, s, t) cos ψ η1(s, t)+R(ψ, s, t) sin ψ η2(s, t)),

is a parameterization of the lateral surface Γ �
lat (t) in the spatial points, the mean

curvature H of that surface is

H = −1

2

(n� · ∂ψψξ �)(∂sξ
� · ∂sξ

�) − 2(n� · ∂ψsξ
�)(∂ψξ � · ∂sξ

�) + (n� · ∂ssξ
�)(∂ψξ � · ∂ψξ �)

(∂ψξ � · ∂ψξ �)(∂sξ
� · ∂sξ

�) − (∂ψξ � · ∂sξ
�)2

,

with outward-directed normal vector n�(ξ �
, t) = (∂ψξ � × ∂sξ

�)/‖∂ψξ � × ∂sξ
�‖ (see Do

Carmo 1998). The resulting formula for H in terms of the radius function R and its
derivatives is lengthy (see Marheineke & Wegener 2007, for details).

In addition to the geometrical quantities, the transformation of (2.2) requires the
following characteristic quantities related to the coordinate transformation r̆:

(a) Coordinate transformation matrix F = ∇x r̆ = ei ⊗ f i ,

with f 1 = ε η1, f 2 = ε η2, f 3 = (1 − εh) τ

(b) Functional determinant J = det F= ε2(1 − εh)

(c) Inverse matrix G= F−1 = gi ⊗ ei

with g1 = ε−1η1, g2 = ε−1η2, g3 = (1 − εh)−1τ

(d) Coordinate velocity q = ∂t r̆ = ∂tγ + ε xα∂tηα

Because the time-dependent coordinate transformation r̆ maps the scaled curvilinear
coordinates x onto spatial points r , we can consider any scalar, vector or tensor field in
our problem relative to either spatial points or coordinates, i.e. f̃ (x, t) = f (r̆(x, t), t).
Here, we suppress the tilde that indicates this distinction to keep the notation simple.
Moreover, in order to preserve the physical and geometrical meaning of the velocity
and the stress in the subsequent curvilinear coordinate formulation of the free BVP
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(2.7), we introduce the following special transformations for these quantities:

u = (v − q) · G, S = J T · G.

We refer to the above relation between the two velocities u and v as the coupling
condition. The intrinsic velocity u describes the rate of convective transport of any
observable in the coordinates, whereas the momentum-associated velocity v represents
one of these transported quantities. Considering that T determines the forces on an
arbitrary spatial surface, the second relation above ensures that S determines the
same forces on the transformed surface in the curvilinear coordinates (see Antman
2006). Moreover, the functional determinant J represents a kind of density since the
coordinate transformation r̆ does not conserve volume.

In summary, we have now transformed the incompressible Navier–Stokes equations
of the free BVP (2.2) in spatial coordinates into ‘compressible’ balance laws in the
curvilinear coordinates, with a complex constitutive law and a distinction between
transported and transporting velocity. The complete free BVP in the curvilinear
coordinates is

∂tJ + ∇x · (J u) = 0, (2.7a)

∂t (Jv) + ∇x · (u ⊗ Jv) = ∇x · ST + (J f ), (2.7b)

u = (v − q) · G, (2.7c)

with the stress tensor

S = −p (ε(1 − εh) (ηα ⊗ eα) + ε2 (τ ⊗ e3))

+
1

Re

(
ε(1 − εh)(∂αuβ + ∂βuα) (ηα ⊗ eβ)

+

(
ε(1 − εh)∂αu3 +

ε3

(1 − εh)
∂suα

)
(ηα ⊗ e3) (2.7d)

+ (ε2∂suα + (1 − εh)2∂αu3) (τ ⊗ eα)

+

(
2 ε2∂su3 +

2ε3

(1 − εh)
h(∂αuα + ∂su3)

)
(τ ⊗ e3)

)
,

where ui := u · ei , i =1, 2, 3. The kinematic and dynamic boundary conditions for the
lateral surface are

(u(ξ , t) − ∂tξ ) · (∂ψξ × ∂sξ ) = 0,

(
S +

ε

We
JHG

)
(ξ , t) · (∂ψξ × ∂sξ ) = 0, (2.7e)

and those for the bottom surface (in case of |(Γbot )(t)| > 0) are

dL

dt
= u3, S · e3 = 0. (2.7f)

Together with the inflow profile v = vin and the initial condition L(0) = 0, the
transformed free BVP is closed by the following constraints on the centreline:

‖∂sγ ‖ = 1, γ (0, t) = γ 0, ∂sγ (0, t) = τ 0,

∫
A(s,t)

x1 dx1 dx2 =

∫
A(s,t)

x2 dx1 dx2 = 0.

(2.7g)

The form of this BVP is derived in Panda et al. (2008) for homogeneous
dynamic boundary conditions, i.e. assuming negligible surface tension. The above
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inhomogeneous dynamic boundary conditions at the lateral surface result directly
from the original spatial ones and the transformation of the stress S = JT · G.
Concerning the bottom boundary, we must distinguish the two cases. If |Γbot | = 0, no
further boundary conditions are necessary since the lateral surface equals the free
surface up to a null set. On the other hand, if |Γbot | > 0, the bottom surface is planar
in the coordinates and has the outward-directed normal vector e3 in accordance
to our definition of the flow domain (2.4). Due to the linearity of the coordinate
transformation in (x1, x2) (cf. (2.3)), the bottom surface in the spatial geometry
inherits the planar shape and has thus zero mean curvature, i.e. H = 0. This leads to
the boundary conditions stated above.

The unknowns of the transformed free BVP (2.7) are the field variables v, p and
the geometrical variables L, γ , R. The intrinsic velocity u and the stress S are given
by the coupling condition and the constitutive equation. All other quantities in the
model (τ , η1, η2, h, ξ , J , G, H ) are defined by the geometry.

2.2. Cross-sectionally averaged balance laws

The derivation of the one-dimensional asymptotic fibre model from the three-
dimensional free BVP (2.7) is based on cross-sectional averaging of the balance
laws. To formulate the averaging, we introduce the following notation for integrals
over cross-sections and for line integrals over their boundary curves:

〈f 〉A(s,t) =

∫
A(s,t)

f (x1, x2, s, t) dx1 dx2, 〈f 〉∂A(s,t) =

∫
∂A(s,t)

f√
n2

1 + n2
2

dl,

where f denotes a differentiable and integrable scalar- or vector-valued function on
Ω(t) and ni := n · ei , i =1, 2, 3 are the components of the normal vector. By the
Reynolds transport theorem, the relations

〈∂sf 〉A(s,t) = ∂s〈f 〉A(s,t) + 〈f n3〉∂A(s,t), 〈∂tf 〉A(s,t) = ∂t〈f 〉A(s,t) − 〈f w〉∂A(s,t)

hold (see Dewynne et al. 1992). Hence, the cross-sectionally averaged balance laws
take the forms

∂t〈J 〉A(s,t) + ∂s〈J u3〉A(s,t) = 0, (2.8a)

∂t〈Jv〉A(s,t) + ∂s〈J u3 v〉A(s,t) = ∂s〈S · e3〉A(s,t) − ε

We
〈JHG · n〉∂A(s,t) + 〈J f 〉A(s,t). (2.8b)

These equations are derived for the case H = 0 in Panda et al. (2008). The case H �= 0
differs only in the expression for the averaged ∇x · ST , whose general form is

〈∇x · ST 〉A(s,t) = ∂s〈S · e3〉A(s,t) + 〈S · n〉∂A(s,t).

Substituting the inhomogeneous dynamic boundary conditions into the above
expression we find that an additional term appears in the momentum law (2.8b)
due to the fact that 〈S · n〉∂A(s,t) = −ε/We〈JHG · n〉∂A(s,t). Using the parameterization
ξ of Γlat (t) and introducing the radius function R, we can express this line integral
explicitly as

〈JHG · n〉∂A(s,t) =

∫ 2π

0

(ε(1 − εh)(∂ψ (R sinψ) η1 − ∂ψ (R cos ψ) η2) − ε2R∂sR τ )H dψ.

(2.9)

2.3. Asymptotic analysis

For the asymptotic analysis, the free BVP is embedded for a fixed slenderness
parameter ε = ε0 in a family of self-similar problems corresponding to parameters
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ε � ε0. For this family, we choose an ε-independent inflow domain in scaled curvilinear
coordinates Γin as well as an ε-independent inflow velocity vin . This choice is enabled
by the ε-independence of (2.6). All other quantities occurring in the BVP depend on
ε, which we indicate by a subscript ε in the following. Their asymptotic expansions
to zeroth- and first-order yield the cross-sectional properties required to evaluate the
averaged balance laws of (2.8). For the field variables v and p and the geometrical
quantities L, γ and R, we posit regular power series of the form

vε = v(0) + εv(1) + O(ε2),

from which the expansions of all other quantities in the problem can be derived.
The local basis vectors τ ε , η1,ε and η2,ε , the corresponding function hε and the
parameterization of the lateral surface ξ ε are of zeroth order, while the functional
determinant Jε is of second order. Due to the decomposition of Gε = gi,ε ⊗ei ∼ O(ε−1),
the expansion of the intrinsic velocity has the form

uε = ε−1 u(−1) + u(0) + ε u(1) + O(ε2),

where in particular u
(−1)
3 = 0 holds because g3,ε ∼ O(1). The stress tensor S then turns

out to be of zeroth order. Computing the mean curvature via the radius function
gives

Hε = ε−1 H (−1) + H (0) + ε H (1) + O(ε2),

thereby 2H (−1) represents the zeroth-order curvature of the boundary curve R(0) in
polar coordinates. The body force densities are assumed to be f ε ∼ O(1) which
stands in accordance to the gravitational and rotational forces we consider later in
the application.

Note that we impose no restrictions on γ ε , in contrast to Decent et al. (2002),
Wallwork et al. (2002) and Decent et al. (2004) who assume a stationary centreline to
leading order for their rotational spinning processes. But, since the shape tends to a
circle under surface tension, we follow – in a weaker sense – their intuitive assumption
of circular cross-sections by setting

R(0) = R(0)(s, t), R(1) = R(1)(s, t). (2.10)

This assumption enables the evaluation of the cross-sectionally averaged balance
laws (2.8), which require knowledge of the relation between the fibre cross-sections
and their boundary curves. But, it implies the restriction to a circular nozzle. Such
assumptions about the shape were avoided by Cummings & Howell (1999), who
showed that the evolution of the cross-sectional shape is generally governed by a quasi
two-dimensional free boundary problem similar to two-dimensional Stokes flow with
a surface tension-driven boundary and described by conformal mappings. However,
since their approach assumes a nearly straight centreline, we cannot apply it to the
curved centrelines of our rotational spinning process. With (2.10), the computation of
the mean curvature to leading orders yields

H (−1) =
1

2R(0)
, H (0) =

−R(0)h(0) − R(1)

2(R(0))2
. (2.11)

Substituting these expansions into (2.7), the balance laws together with the dynamic
lateral surface condition lead at zeroth and first order to two-dimensional Laplace
problems and stress-free Stokes flows. The solution theory of these problems is based
on the proof techniques of Dewynne et al. (1992) and formulated in Panda et al.
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(2008) (Theorem 8, Corollaries 9 and 10): let a scalar-valued function ϕ as well as
vector- and scalar-valued functions Φ and f satisfy the general problems:

�ϕ = 0, ∇ · Φ = c, �Φ = ∇f, in D,

∇ϕ · n = 0, (∇Φ + ∇ΦT ) · n = f n, on ∂D,

on a bounded domain D ⊂ �2 with outward-directed normal n and a given constant
c ∈ �. The solutions then have the form

ϕ(x1, x2) = d, Φ(x1, x2) =

(
c

2
x1 − ax2 + b1,

c

2
x2 + ax1 + b2

)
, f = c,

where a, b1, b2 and d are constant parameters. Applying this theory to our asymptotic
problems, we identify D with the cross-sections A0(s, t) given by R(0)(s, t) and embed
all functions into A0(s, t) × [0, L(0)(t)). The parameters in our solution thus become
functions of s and t . The restriction of the asymptotic analysis – even at first order –
on the geometry at zeroth order is justified in Dewynne et al. (1992) and Cummings &
Howell (1999) and formally proved in Panda et al. (2008) for our parameterization ξ ε

using Taylor expansions of the boundary conditions. In the asymptotic problems at
zeroth and first order, the general functions ϕ, Φ and f have the specific identities:

ϕ = u
(0)
3 , Φ =

(
u

(−1)
1 , u

(−1)
2

)
, f = c = 0,

ϕ = u
(1)
3 , Φ =

(
u

(0)
1 , u

(0)
2

)
, f = Re

(
p(0) − 1

We
H (−1)

)
, c = −∂su

(0)
3 .

The satisfaction of the kinematic boundary conditions (2.7e) to leading orders requires
the vanishing of the additive parameters b1(s, t) and b2(s, t) in both problems, but does
not affect the choice of a(s, t). At zeroth order, a(s, t) would vanish for non-circular
cross-sections. The degree of freedom in the considered circular case is gained from
the coordinate transformation. However, the singularity that appears has no effect on
our final result due to the centreline condition (2.5), as we will see below. At first order,
a(s, t) can be interpreted as twist (see Dewynne et al. 1994), but since it decouples
from our final model we need not determine it. In addition, the satisfaction of the
kinematic boundary conditions in (2.7e) associated to the first-order system leads
also to the (cross-sectionally averaged) continuity equation for the asymptotic fibre
model (2.12a). While this result is not surprising given that we require the boundary
to be circular, it confirms the consistency of our assumption and the asymptotic
analysis. Summing up, the intrinsic velocity and pressure profiles relevant for the
further discussion are

u
(−1)
1 = −a(s, t)x2, u

(−1)
2 = a(s, t)x1, u

(0)
3 = u

(0)
3 (s, t),

p(0) = − 1

Re
∂su

(0)
3 (s, t) +

1

We
H (−1)(s, t),

where the incorporation of surface tension modifies the pressure in comparison to
Panda et al. (2008). Moreover, the asymptotic analysis yields the following expressions
for the momentum-associated velocity and the stresses:

v(0) = u(−1)
α η(0)

α + u
(0)
3 τ (0) + ∂tγ

(0), S(0) = S(1) = 0.

The cross-sectionally averaged balance laws (2.8) provide the closure for the
asymptotic analysis. Considering (2.8b) and noting that S(0) and S(1) vanish, we see
that only the axial effect of the second-order stress is of interest. With the asymptotic
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results of zeroth and first order, its explicit form is

S(2) · e3 = −p(0)τ (0) +
1

Re

(
2
(
∂su

(0)
3 − u(−1)

α ∂αh
)
τ (0) + ∂su

(−1)
α η(0)

α

)
.

Using this together with the centreline condition (2.5) and the expression for p(0), we
obtain

〈S(2) · e3〉A0
=

(
3

Re
|A0| ∂su

(0)
3 −

√
π

2We

√
|A0|

)
τ (0).

The line integral over the boundary in (2.8b)/(2.9) vanishes consistently at zeroth
order because of (2.11). At first order, it is explicitly given by

(〈JHG · n〉∂A)(1) = −
√

π ∂s

(√
|A0| τ (0)

)
.

Consequently, the averaged balance laws at their leading order yield the following
asymptotic fibre model:

∂t |A0| + ∂s

(
u

(0)
3 |A0|

)
= 0, (2.12a)

∂t (〈v(0)〉A0
) + ∂s

(
u

(0)
3 〈v(0)〉A0

)
= ∂s

((
3

Re
|A0| ∂su

(0)
3 +

√
π

2We

√
|A0|

)
τ (0)

)
+ 〈 f (0)〉A0

,

(2.12b)

together with the coupling and geometrical conditions (cf. page 355 for the respective
expansions)

〈v(0)〉A0
=

(
u

(0)
3 (s, t)τ (0)(s, t) + ∂tγ

(0)(s, t)
)

|A0|, (2.12c)∥∥∂sγ
(0)

∥∥ = 1. (2.12d)

In the momentum equation, only the cross-sectionally averaged velocity, and not the
exact profile, is of interest. Its exclusive dependence on the tangential intrinsic velocity
and the dynamics of the centreline is deduced from the centreline condition.

2.4. Initial and boundary conditions

Closing the one-dimensional fibre model (2.12) requires appropriate leading-order
initial and boundary conditions. As Ω(0) = ∅, the initial condition is L(0)(0) = 0, and
the initial bottom surface is formally prescribed by the nozzle area. Obviously, the
asymptotic theory is not valid for the initial stage of the process because the fibre is
not slender. Nevertheless, lacking a better initialization, we use the model even for
this stage. The ε independence of the inflow domain implies the following boundary
conditions at the nozzle:

γ (0)(0, t) = γ 0, ∂sγ
(0)(0, t) = τ 0, |A0|(0, t) = 1,

together with

u
(0)
3 (0, t) = 1,

which is a consequence of 〈vin〉A0(0,t) = 〈v(0)〉A0(0,t) = u
(0)
3 (0, t)τ 0.

It remains to deduce the kinematic and dynamic boundary conditions for the
free end of the fibre. For the case |Γbot | > 0, these conditions are just the averaged
leading-order contributions to (2.7f ). However, in the presence of surface tension, it
seems physically more realistic to suppose that the end shrinks to a single point.
The analytical continuation of the lateral boundary conditions to such an end
point, which would be the logical approach, fails in the asymptotics due to the
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breakdown of the slender body assumptions (see also Eggers & Dupont 2001).
We overcome this problem using a volume-averaging approach that is successful in
both cases, i.e. |Γbot | � 0. In particular, we deduce the missing boundary conditions
by comparing the volume-averaged three-dimensional and the line-averaged one-
dimensional balance laws at leading order.

Integrating (2.8) over the arclength parameter s yields the volume-averaged three-
dimensional balance laws

d

dt

∫ Lε (t)

0

〈Jε〉Aε (s,t) ds − 〈Jεuε · e3〉Aε (0,t) = 0,

d

dt

∫ Lε (t)

0

〈Jεvε〉Aε (s,t) ds − 〈Jεvεuε · e3〉Aε (0,t)

= −〈Sε · e3〉Aε (0,t) − ε

We

∫ Lε (t)

0

〈JεHεGε · nε〉∂Aε (s,t) ds +

∫ Lε (t)

0

〈Jε f ε〉Aε (s,t) ds.

The left-hand sides in the above expressions are obtained using the averaging
techniques described in § 2.2 together with the kinematic boundary conditions. The
integral over the bottom surface 〈Sε · e3〉Aε (L(t),t) on the right-hand side of the
momentum equation vanishes since either |Aε(Lε(t), t)| = 0 for a single fibre end
point or Hε = 0 for a planar bottom surface (cf. dynamic boundary conditions in
(2.7f )). Consequently, we get to leading order∫ L(0)(t)

0

∂t |A0| ds +
dL(0)(t)

dt
|A0|

(
L(0)(t), t

)
−

(
u

(0)
3 |A0|

)
(0, t) = 0,

∫ L(0)(t)

0

∂t〈v(0)〉A0(s,t) ds +
dL(0)(t)

dt

〈
v(0)

〉
A0(L(0)(t),t)

− u
(0)
3 (0, t)

〈
v(0)

〉
A0(0,t)

=

√
π

We
(
√

|A0|τ (0))(L(0)(t), t) −
((

3

Re
|A0| ∂su

(0)
3 +

√
π

2We

√
|A0|

)
τ (0)

)
(0, t)

+

∫ L(0)(t)

0

〈
f (0)

〉
A0(s,t)

ds.

Integrating the one-dimensional fibre equations (2.12) over s ∈ [0, L(0)(t)) leads to a
similar but slightly different set of equations. Requiring the difference between the
two to be zero yields the desired kinematic and dynamic boundary conditions, i.e.

dL(0)(t)

dt
= u

(0)
3 (L(0)(t), t),

(
|A0| ∂su

(0)
3

)
(L(0)(t), t) =

√
π

6

Re

We

√
|A0|(L(0)(t), t). (2.13)

Setting u = u
(0)
3 , v = 〈v(0)〉A0

/|A0|, f = 〈 f (0)〉A0
/|A0| and A= |A0| and dropping the

superscripts (0) in (2.12) and (2.13), we obtain the one-dimensional model (1.1)
describing the fibre dynamics.

3. Numerical results and discussion
The asymptotic model derived above describes the spinning of a slender curved

inertial viscous Newtonian fibre with surface tension. It determines the dynamics
of the fibre centreline γ , the cross-sectional area A, the intrinsic velocity u and the
momentum-associated velocity v, as well as the temporal evolution of the fibre length
L. Our balance laws for mass and momentum place no restrictions on the motion
or shape of the fibre centreline, and account for both the inner viscous transport
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and surface tension. Our model thus includes most of those previously developed
for nearly straight and curved centrelines, as we will show in more detail below.
Extending particularly the work on curved fibres by Decent et al. (2002), Wallwork
et al. (2002), Decent et al. (2004) and Panda et al. (2008) to non-stationary centrelines
with surface tension, our model can be regarded as a generalized theory of viscous
‘strings’. The decoupling of the angular momentum effects that are characteristic for
a ‘rod’ theory results from our choice of the non-stationary geometrical centreline as
reference curve. The viscous ‘rod’ approach by Ribe (2004) and Ribe et al. (2006a)
is based on a material curve in a scenario without surface tension. Both approaches
coincide for negligibly small transversal forces in a stationary case, since then Ribe’s
complex system of linear and angular momentum equations decomposes.

In our model, the axial stress

stot = svis + ssurf =

(
3

Re
A∂su +

√
π

2We

√
A

)
∂sγ ,

includes contributions from both viscosity and surface tension. The first term repre-
sents the Trouton viscosity (see Trouton 1906), while the second term is the leading-
order contribution of the mean curvature. By rewriting the dynamic boundary
condition as svis (L(t), t) = ssurf (L(t), t), we see that the viscous stresses balance the
surface tension at the fibre end. Our model predicts asymptotically a finite cross-
sectional area A(L(t), t) whose temporal evolution depends on the ratio of viscous
forces and surface tension measured by the capillary number Ca =We/Re. At first
glance, this seems to involve a contradiction: no surface tension acts on a planar
bottom surface, nor is a planar bottom surface physically realistic in the presence
of surface tension. However, note that we never assumed the end to be planar for
t > 0 in the description of the three-dimensional problem. Rather, model (2.7) enables
the treatment of both possibilities, a single end point as well as a bottom surface.
However, our asymptotic model (1.1) predicts a finite bottom surface at leading order
such that the apparent contradiction occurs between the physical perception of the
spatial ending and the asymptotic result. This observation suggests the existence of
a boundary layer of length ε in the three-dimensional BVP that is not described by
(1.1). Nevertheless, its effect on the fibre dynamics should be localized, because our
balance laws come from a systematic derivation and the boundary conditions from
a global balance. To incorporate the layer in the one-dimensional theory, it might be
useful to extend the asymptotics to higher order, including axial curvature (see Eggers
1997, for uniaxial flow). Such a theory should be able to describe more effects arising
from surface tension. As a destabilizing mechanism to the flow, it drives instabilities
that lead to fibre breakup and drop formation (Eggers & Dupont 2001; Sierou &
Lister 2003; Wong et al. 2004; Partridge et al. 2005).

A simple differential equation that describes the evolution of the area at the fibre
end can be obtained by combining conservation of mass and the boundary conditions,
and is

dA(L(t), t)

dt
= −(A∂su)(L(t), t) = −

√
π

6Ca

√
A(L(t), t), A(0, 0) = 1.

Its unique solution is

A(L(t), t) =

{
(1 − t/tc)

2, t � tc

0, t > tc
, tc =

12√
π

Ca, (3.1)
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since A � 0. Note that our model ceases to be valid when A(L(t), t) = 0 due to the
definition of the fibre domain (2.4). Accordingly, the numerical simulations described
below are performed for t < tc.

The evolution of the end surface of the fibre is independent of the body forces
whose specification closes the underlying free BVP. In the application to rotational
spinning the force densities f are due to gravity and rotation,

f =
1

Fr2
eg − 2

Rb
(eω × v) − 1

Rb2
(eω × (eω × γ )),

where g eg = g is the acceleration of gravity and ω eω =ω the angular velocity
of the rotating device with radius 	. The rotation axis goes through the origin.
The dimensionless Froude number Fr = V/

√
g	 and Rossby number Rb = V/(ω	)

characterize the relation between inertial and gravitational forces and between inertial
and rotational forces, respectively.

To study the effects of surface tension, viscosity, gravity and rotation on the fibre
dynamics, we perform numerical simulations for different values of the characteristic
dimensionless groups (We, Re, Fr and Rb). We begin with the special case of
uniaxial flow under gravity, for which the asymptotic model takes a particularly
simple form while still retaining the characteristic behaviour (3.1) of the free end, and
proceed thence to more general cases of fibres with curved centrelines. In devising
a numerical scheme, it is important to suppress surface tension-driven instabilities,
modes with arbitrarily short wavelength and finite growth rate, of the kind analysed
in Eggers (1997) and Eggers & Dupont (2001) for uniaxial flows. One way to do
this is to abandon the formal asymptotic analysis on physical grounds by replacing
the leading-order mean curvature by the full expression for the mean curvature
of a jet with circular cross-sections and straight centreline. This approach can be
rigorously justified for a uniaxial flow, but has also been successfully applied to
curved flows (Entov & Yarin 1984; Yarin 1993; Eggers & Dupont 2001; Wallwork
et al. 2002). Instead of such a regularization with axial curvature, we choose to damp
the instabilities numerically in this paper. The essence of our algorithm is a finite-
volume method on a staggered grid with implicit upwind flux discretization, with a
new cell added at each time step to account for the increasing length of the fibre.
More details of the implementation are given in Panda (2006).

3.1. Uniaxial flow under gravity

The special case of uniaxial flow arises when a spatially fixed spinning nozzle injects
the fibre vertically downward, in the direction of gravity eg . This situation can be
described by setting τ 0 = eg and Rb → ∞ in (1.1), whereupon our model equations
reduce to a system for A, u and L :

∂tA + ∂s(uA) = 0,

∂t (Au) + ∂s(u
2A) = ∂s

(
3

Re
A∂su +

√
π

2We

√
A

)
+

1

Fr2
A,

together with the boundary conditions A(0, t) = 1, u(0, t) = 1 at the nozzle and

dL(t)

dt
= u(L(t), t), L(0) = 0 (A∂su)(L(t), t) =

√
π

6

Re

We

√
A(L(t), t),

at the free end. Because the geometrical constraint is satisfied identically, the centreline
variable γ does not enter the problem. Moreover, the momentum equation becomes
scalar-valued, since the coupling condition reduces to v = ueg and the force densities to
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f = eg/Fr2. In spite of the simplifications, the essential characteristics of the temporal
evolution of the free end described by (3.1) are retained.

The unidirectional balance laws are well known in the context of glass fibre
drawing, where a fibre of fixed length is stretched by a pulling velocity applied to
its end (see, e.g. Pearson & Matovich 1969; Pearson 1985; Caroselli 1999), and the
stability of these equations has been analysed (see, e.g. Geyling & Homsey 1980;
Gospodinov & Roussinov 1993; Eggers 1997; Yarin et al. 1999). For the case of a
free end without surface tension, numerical schemes are presented, e.g. in Stokes et al.
(2000), Stokes & Tuck (2004) and Panda (2006). Stokes & Tuck (2004) used a finite
element method in terms of a Lagrangian framework to simulate the extensional fall
of viscous drops, whereas Panda (2006) developed a numerical scheme based on a
finite-volume method on a staggered grid in Eulerian coordinates. Here we extend
the latter approach incorporating the dynamic boundary conditions associated with
surface tension. Our numerical results coincide with those in Stokes & Tuck (2004)
and Panda (2006) for We → ∞, in which case the bottom cross-section preserves
the initial area A(L(t), t) = A(0, 0) because ∂su(L(t), t) = 0. This effect is confined to a
boundary layer and has almost no influence on the behaviour of the rest of the fibre,
see Yarin (1993) and figure 3 for We = 10.

Figures 3 and 4 illustrate the temporal evolution of the fibre properties, i.e. cross-
section A, velocity u and stresses stot , svis , ssurf over the arclength s, for three
different scenarios with varying Weber number We ∈ {0.25, 1, 10} and fixed Froude
and Reynolds numbers (Fr, Re) = (0.5, 1). Thereby, the scaling of the axes is not
chosen equally but adapted to the focus of interest. Considering the free fibre end, the
numerical simulations confirm the force balance between viscous and surface tension
(svis (L(t), t) = ssurf (L(t), t)), and moreover reproduce quantitatively the theoretical
prediction of A(L(t), t). The lower the Weber number, i.e. the larger the surface
tension, the faster is the decrease of the cross-section at the free end. The scalar-
valued tension stot in the fibre is dominated by the contribution of surface tension
ssurf =

√
πA/(2We), whereas the viscous tension svis = 3A∂su/Re decays rapidly to zero

(see figure 4). When the viscous stresses become negative because of a sign change of
∂su, our numerical simulations break down due to non-convergence of our implicit
solver. The higher the Weber number, the longer it takes to reach this point, as also
observed in Wallwork et al. (2002), Wong et al. (2004) and Partridge et al. (2005).
However, we expect our model to be valid up to the time of breakup where A= 0,
according to detailed investigations of the model equations with a prescribed end and
their extension including axial curvature (Eggers 1997; Eggers & Dupont 2001).

3.2. Curved flow under gravitation and rotation

For the simulation of rotational spinning (figure 1), we use the full model (1.1). In
particular, we consider a situation in which a fibre is ejected horizontally from
a spinning nozzle located on the curved face of a cylindrical drum with unit
dimensionless radius that rotates about its vertical symmetry axis. Symbolically, this
implies eω = −eg = e3 and γ 0 = τ 0 = e1 where e1, e2 and e3 denote the canonical basis
of �3 in the rotating reference frame. Figures 5–7 show the temporal evolution of the
cross-section A, the intrinsic velocity u and the projection of the fibre centreline onto
the e1–e2-plane, for different combinations of values of the dimensionless parameters.
Our results for high Reynolds number (small viscosity) agree well with those of
Wallwork et al. (2002), Decent et al. (2004) and Wong et al. (2004): the smaller
the Rossby number, i.e. the faster the rotation, the more pronounced is the curling
of the fibre in the e1–e2-plane. The curling is also influenced by the surface tension.
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Figure 3. Uniaxial flow. Top to bottom: temporal evolution of A, u and stresses stot (–), svis

(- -), ssurf (-.) for t ∈ {0.5, 1.5, 2.5}, Fr =0.5, Re = 1. Left, We =10 with tc = 67.7. Right, We = 1
with tc = 6.7. Note that the scaling of the axes is different for the three cases.

Moreover, decreasing the Weber number, i.e. increasing the surface tension, accelerates
the thinning of the end of the fibre as in the case of uniaxial flow. The critical time
tc = 12We/(

√
πRe) when the end of the fibre shrinks to a point is observed in the

simulations. In contrast to the approach of Wallwork et al. (2002) and Decent
et al. (2004) which is restricted to a stationary centreline, our model allows the
numerical simulation of a non-stationary fibre centreline, which is important for
fast rotation and small Reynolds number flow, as illustrated in figures 6 and 1 (see
also Panda et al. 2008, for visualizations of this effect). An important manifestation
of non-stationarity in rotational glass spinning processes is the recoil of a highly
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viscous fibre after drop detachment; see the ‘dynamic breakup mode 4’ observed by
Wong et al. (2004).

Note, however, that the applicability of our model is restricted to certain parameter
ranges. Physically relevant solutions for the model for stationary flow without surface
tension exist only for Re−1 <Rb2, Rb → 0, Re → ∞ (for the proof see Götz et al.
2008). When surface tension is included, the question of existence is more difficult to
answer and left to future research. Moreover, for small Weber numbers (high surface
tension), we encounter numerical problems at the nozzle, because the fluid exits at an
angle different than the nominal (perpendicular) exit angle. The boundary layer that
results seems to cause a failure of the slender body theory, which, however, might



364 N. Marheineke and R. Wegener

0 5 10 15

0 5 10 15

0.2

0.4

0.6

0.8

1.0

0 5 10 15

0.2

0.4

0.6

0.8

1.0
A(s), Fr = 2, Re = 1, Rb = 10, We = ∞ A(s), Fr = 2, Re = 1, Rb = 10, We = 10

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 5 10 15
1.0

1.5

2.0

2.5

3.0

3.5

4.0
u(s), Fr = 2, Re = 1, Rb = 10, We = ∞ u(s), Fr = 2, Re = 1, Rb = 10, We = 10

–8 –6 –4 –2 0 2 4 6

–6

–4

–2

0

2

4

6

8

–8 –6 –4 –2 0 2 4 6

–6

–4

–2

0

2

4

6

8

γ , Fr = 2, Re = 1, Rb = 10, We = ∞ γ, Fr = 2, Re = 1, Rb = 10, We = 10

Figure 5. Curved flow. Top to bottom: temporal evolution of A, u and the projection of γ
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Right, We = 10.

be overcome by using modified boundary conditions at the nozzle. This remains
to be further investigated (see also Finnicum et al. 1993; Eggers & Dupont 2001;
Decent et al. 2002; Wallwork et al. 2002 on this point). Alternatively, the analysis
of the angular momentum effects and the remaining ε-dependence in the model of
Ribe et al. (2006a) raises hope that a generalized non-stationary ‘rod’ theory might
handle these problems, in analogy to the previous studies on ‘string’ and ‘rod’ models
for fluid-mechanical sewing machines by Chiu-Webster & Lister (2006) and Ribe,
Lister & Chiu-Webster (2006b).
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4. Conclusion
The asymptotic one-dimensional model for fibre dynamics that we have derived

in this paper allows the simulation of non-stationary curved highly viscous fibres
with surface tension and free ends as they occur in rotational spinning processes. Our
balance laws for mass and momentum, which generalize those used in several previous
studies, place no restrictions on the motion or shape of the fibre centreline and account
fully for both inner viscous transport and surface tension. The boundary conditions
we have deduced for the free end give quantitative information about its temporal
evolution as a function of the ratio of viscous forces and surface tension. A deeper
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insight into the effects at the fibre end might be obtained by including axial curvature
in the model. Numerical simulations performed using the model are physically realistic,
except when Re−1 >Rb2 or when the Weber number is very small. The failure takes the
form of unphysical behaviour near the nozzle indicating that the slender body theory
breaks down due to the presence of a transition region or boundary layer there.
The problem might be overcome by imposing modified boundary conditions on the
nozzle exit angle, but this requires further theoretical and numerical investigation.
Future extensions of the model with a view towards practical applications include the
incorporation of aerodynamic forces and temperature dependence.
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Appendix
The appendix is meant to facilitate the comparability of our asymptotic model

to those in literature. In particular, the meaning of our intrinsic velocity u and its
derivative ∂su is discussed in more detail.

Mathematically, u acts as Lagrangian parameter to the arclength constraint
‖∂sγ ‖ = 1 in our model equations (1.1a)–(1.1c) for cross-section A, linear momentum
Av and centreline γ . To understand the physical meaning of u, we introduce a
transformation ψ by the following differential equation:

∂tψ(σ, t) = u(ψ(σ, t), t) equipped with appropriate initial condition, (A 1)

and re-parametrize centreline and momentum-associated velocity according to

γ̂ (σ, t) = γ (ψ(σ, t), t), v̂(σ, t) = v(ψ(σ, t), t). (A 2)

In the new parametrization, the coupling condition (1.1c) becomes ∂t γ̂ = v̂, indicating
a material description. This means that ψ(σ, t) is the arclength parameter associated
to the material point σ on the fibre and u is the temporal rate of its change (cf. (A 1)).

Differentiating (A 1) and (A 2) with respect to σ , we obtain

∂su(ψ(σ, t), t) =
∂t‖∂σ γ̂ ‖
‖∂σ γ̂ ‖ (σ, t),

with the help of the arclength constraint. Consequently, ∂su represents the relative
rate of stretching that can also be related to the curvature κ of the centreline and the
tangential and normal components of the momentum-associated velocity

∂su = ∂svτ − κvη, (A 3)

with vτ = v · τ , vη = v · η, τ = ∂sγ , η = ∂ssγ /κ and κ = ‖∂ssγ ‖. The above relation results
from projecting our coupling condition (1.1c) in tangential direction and differentiat-
ing it with respect to the arclength parameter. Relation (A 3) plays an essential role in
the literature for viscous jets (see, e.g. Buckmaster, Nachman & Ting 1975; Entov &
Yarin 1984; Ribe et al. 2006a). It shows the dependencies of the viscous stresses on
the curvature of the fibre centreline.
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